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Abstract
Real-world graph observations may contain local
corruptions by abnormal behaviors. While exist-
ing research usually pursues global smoothness in
graph embedding, these rarely observed anoma-
lies are harmful to an accurate prediction. This
work establishes a graph learning scheme that au-
tomatically detects corrupted node attributes and
recovers robust embedding for prediction tasks.
The detection operation does not make any as-
sumptions about the distribution of the local cor-
ruptions. It pinpoints the positions of the anoma-
lous node attributes in an unbiased mask matrix,
where robust estimations are recovered with an
ℓp,q regularizer. We alleviate an inertial alternat-
ing direction method of multipliers to approach a
new embedding that is sparse in the framelet do-
main and conditionally close to input observations.
Extensive experiments validate the model recov-
ers robust graph representations from black-box
poisoning and achieves excellent performance.

1. Introduction
Graph neural networks (GNNs; Bronstein et al. (2017); Wu
et al. (2020b); Zhou et al. (2020); Zhang et al. (2020); Atz
et al. (2021)) have received tremendous success in the past
few years. Graphs, as the input of GNNs, record useful
features and structural information, and they exist widely in
many fields such as biomedical science (Ahmedt-Aristizabal
et al., 2021), social networks (Fan et al., 2019), and recom-
mendation systems (Wu et al., 2020a).
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Similar to other real-world observations, inaccurate observa-
tions are ubiquitous in graphs with a noticeable side-effect
for graph representation learning. For instance, fraudulent
users in social media tend to fake user avatars or online
activities. A recommender might be dysfunctional by mis-
labeled items or users. Such disruptive observations hinder
the model fitting and prediction. The feature aggregation in
graph representation learning accentuates the negative influ-
ence of irregular entities to their neighborhoods, resulting in
a misleading latent feature representation for the predictor.
To this end, this research proposes to protect the graph pre-
diction performance by recovering a robust representation
for the irregular entities.

Existing works are aware of the harmful graph anomalies.
Graph anomaly detection (Ding et al., 2019; Peng et al.,
2020; Zhu et al., 2020; Ma et al., 2021) identifies the small
portion of problematic nodes; graph defense refines the
learning manner of a classifier to provide promising pre-
dictions against potential threats (Dai et al., 2018; Zügner
& Günnemann, 2019; Xu et al., 2020); optimization-based
graph convolutions smooth out global noise by special regu-
larization designs (Liu et al., 2021; Zhou et al., 2021; Zhu
et al., 2021; Chen et al., 2021). However, the first candidate
detects irregular nodes rather than node attributes, and it
does not amend the flawed representation of the identified
outlier. The second approach provides an adequate solution
to amend the prediction performance, but most researches
focus on graph rewiring, as edges are believed more vulnera-
ble to adversarial attacks. Last but not least, the third choice
usually makes assumptions on the distribution of feature
corruptions that they are normally observed in all inputs.

Instead, this paper develops a ‘detect-and-then-recovery’
strategy to save graph representation learning from a small
portion of hidden corruptions in input node attributes. In
particular, an unsupervised encoder module first exposes
suspicious attributes and assigns a mask matrix to record
their positions. The detector requires no prior on the distri-
bution of the anomalous attributes. The constructed mask
is submitted to a sparsity regularizer with graph framelet
transforms (Dong, 2017; Zheng et al., 2021) to find a robust
approximation of the initial input, where the iterative opti-
mizing scheme acts similar to graph convolutional layers
that constantly smooth the hidden feature representation
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Figure 1. A brief grasp of the proposed MAGNET’s architecture. The input feature attributes (gray) are assumed locally corrupted. The
first module (red) constructs a mask matrix with graph autoencoder, which is then sent to an ADMM-oriented optimizer together with the
perturbed graph input to iterate a robust feature representation (in yellow). The new representation is functioned as hidden embeddings by
typical graph convolutional layers, which can be further encoded by other convolutions, or be sent to a predictor (in blue).

for GNN prediction tasks. With the transforms of the in-
put signal, the posterior mask guarantees that the denoising
is predominantly conducted at the essential spots, and the
representation pumps up the robustness significantly.

Combining the three key ingredients of Mask, ADMM, and
Graph, we name our model as MAGNET. Figure 1 illus-
trates the three components for unsupervised mask construc-
tion, localized robust optimization, and graph representation
learning. The proposed MAGNET detects local corruptions
in an unsupervised manner and approximates a robust rep-
resentation for graph network training. We also develop an
efficient inertial alternating direction method of multipliers
(ADMM) algorithm, which provides a faster convergence
than the plain ADMM with time complexity of O(k−1).

2. Problem Formulation
An undirected attributed G = (V, E ,X) has n = |V| nodes
with the interactions described by an adjacency matrixA ∈
Rn×n. The observed d-dimensional node features X ∈
Rn×d is a noised version of the ground truth signal U , i.e.,

X = U +E1 +E2, (1)

where we call E1 global noise and E2 outliers or local
corruptions. The main difference between E1 and E2 is
that the former might universally exist on the entire graph,
and the latter generally take a small chance of existence so
it cannot be observed from a large set of nodes. We hereby
make three assumptions on the properties of U ,E1 and
E2: (a) E1 ∼ D(0, σ) where σ is considerably small; (b)
E2 take a small portion of the entire graph; and (c) X is
close to U besides the anomalous locations. The associated

objective function to estimate U reads

min
U

αReg(U) + βLoss(E2)

such thatX|M = (U +E1 +E2)|M ,
(2)

where α, β are tuning parameters, andM is a mask matrix
of outliers indices. The Reg(·),Loss(·) denote regularizers
and loss functions satisfying assumptions (a) and (b).

Choice of Loss(E2). The loss function plays the role
of finding an object U that approximates the input feature
X . Assumption (b) requires a measure with respect to
the sparsity of E2 has to be optimized. The best choice
for sparsity, in theory, is ℓ0-norm that counts the number
of nonzero entries in E2. While solving a ℓ0 constrained
problem is NP-hard, ℓ1-norm allows feasible solution for
(2) that promotes good sparsity measure of E2 (Chen et al.,
2015). Such a design has been practiced in residual analysis-
based anomaly detection methods to label suspicious small
outliers (Li et al., 2017; Peng et al., 2018).

Choice of Reg(U). The regularization term is a penalty
complementary to the loss, which controls the noise level
of X by the smoothness of U , and it is usually quanti-
fied by some type of energy. For instance, GCN (Kipf
& Welling, 2017) utilizes normalized Dirichlet energy of
U by tr(U⊤L̃U), where L̃ denotes the normalized graph
Laplacian from L̃ = I −D− 1

2AD− 1
2 with the adjacency

matrix A and its degree matrix D. Minimizing such en-
ergy encourages message transmissions among connected
nodes. By extracting the summary of neighborhood space,
unnoticeable noise is likely to be smoothed out. In addition,
minimizing the Dirichlet energy implies a low-rank solution
to U (Monti et al., 2017). Such a graph smoothing effect
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(Zhu et al., 2021; Liu et al., 2021) that minimizes Dirichlet
energy can be found in many spatial-based graph convo-
lutions (Klicpera et al., 2018; Xu et al., 2018; Wu et al.,
2019). Alternatively, spectral-based methods regularizes the
graph signal in a transformed domain by L. For example,
Dong (2017) and Zhou et al. (2021) minimize the ℓ1-norm
total variation of framelet coefficients, and Mahmood et al.
(2018) take a similar regularization in the wavelet domain.
As the total variation reflects redundant local fluctuations, a
solution to minimize it is believed to remove noisy details
while simultaneously preserving essential patterns.

Restriction on E1 +E2. Compared to the main ingredi-
ents of the objective function, the treatment to the fidelity
constraint is rather trivial if the outlier E2 does not exist,
where a regularizer can be adopted to minimize the differ-
ence between X and U +E1. When E2 is assumed with
a small percentage, it becomes irrational to force U to ap-
proximateX especially on anomalous locations. Instead, a
conditional approximation should be placed with the index
matrix M , in which case only attributes at regular posi-
tions are required aligned, i.e., Reg (M ⊙ (X −U)). The
regularization can be appended to the main objective by

min
U

αReg(U) + βLoss (M ⊙ (X −U)) . (3)

The above optimization for graph signal recovery is well-
defined. Nevertheless, it has three issues in application.
First, a direct minimization of the Dirichlet energy in spa-
tial domain usually falls into the pitfall of over-smoothing,
where the recovered graph loss expressivity drastically (Bal-
cilar et al., 2020). On the other hand, spectral transforms can
be sophisticated and time-consuming, which is generally
circumvented by the majority of studies. Second, restricting
a ℓ1 or ℓ2 norm does not adapt to a specific dataset or ap-
plication, which could give rise to the precision loss of the
recovered graph representation. Last but not least, attaining
the mask matrix M in (3) can be nasty in practice, as the
prior knowledge ofM is generally inaccessible.

We hereby formulate a new objective function

min
U

∥νWU∥p,G +
1

2
∥M ⊙ (U −X)∥qq,G, (4)

where W is a set of multi-scale and multi-level framelet
decomposition operators. See Appendix A for a brief expla-
nation on the fast approximation of W . These decompo-
sition operators transform the input feature U to low-pass
and high-pass framelet coefficients in the framelet (spec-
tral) domain. The two hyperparameters α, β in (3) are de-
duced to ν, which is a set of tunable parameters adaptive to
high-frequency framelet coefficients in different scales. We
also replace the ordinary Euclidean ℓk-norm with a graph
ℓk-norm, denoted as ℓk,G, to assign higher penalties to in-
fluential nodes. For an arbitrary node vi of degree Dii,

∥vi∥k,G :=
(
∥vi∥k ·Dii

) 1
k .

Compared to the initial design (2), (4) made three adjust-
ments to tackle the identified issues. First, minimizing the
first component smooths outE1 from high-pass framelet co-
efficients, which avoids information loss by spatial Dirichlet
energy minimization. In other words, the global noise E1

is removed without sacrificing small-energy features. Sec-
ondly, we adopt ℓp,q-norm to adaptively restrict the sparsity
of recovered graph with tunable p ∈ [1, 2], q ∈ [0, 1]. As
introduced in Section 4, the optimization can be solved by
an inertial version of the alternating direction method of
multipliers with promising convergence.

A potential solution to the unreachable mask matrix M
is to add a sub-problem of optimization to (4), which in-
troduces a two-stage optimization problem. However, this
approach blows up the difficulty of solving the existing prob-
lem and the mask could be a very complicated region to
reveal. Instead, we consider an unsupervised GNN scheme
to automate the anomalous positions discovery. We approx-
imate the anomaly score of the raw feature matrix with a
classic graph anomaly detection scheme that looks for the
reconstruction error between the raw feature matrix and the
reconstructed matrix from neural networks.

3. Graph Anomaly Detection for Mask Matrix
Graph anomaly detection is an important subproblem of the
general graph signal recovery where outliers are assumed
to exist in the input. A detector identifies nodes with E2 as
community anomalies (Ma et al., 2021), which is defined as
nodes that have distinct attribute values compared to their
neighbors of the same community. The underlying assump-
tion here is that the outlier is sparse and their coefficients
are antipathetic from the smooth graph signalU . We hereby
consider GNN-based algorithms to investigate the difference
of each node from the representation of its local community.

3.1. Graph Autoencoder

Autoencoder is a powerful tool for reconstructing corrupted
objects (Aggarwal, 2017; Kovenko & Bogach, 2020). GAE
(Kipf & Welling, 2016) is a GCN-based classic graph au-
toencoder network, which revisions have drawn substantial
interest for graph anomaly detection (Ding et al., 2019; Peng
et al., 2020; Zhu et al., 2020).

Network Training. A GAE layer takes the information of
G to obtain an embedding Z ∈ Rn×h of a hidden size h by
Z = GCN(X,A). Alternatively, one trains a feed-forward
network to recover graph attributes by X ′ = FFN(Z).
The X ′ is a smoothed version of X , which is believed
removing essential noise or minor corruptions of the raw
input. In the design by Ding et al. (2019) and Peng et al.
(2018) for graph anomaly detection, the learning objective
of the neural network is to best reconstruct the graph data
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(X ′,A′), which loss function is the weighted average of the
squared reconstruction errors

L = α∥X −X ′∥2.

Anomaly Score. Once the graph is reconstructed, it is
straightforward to find outliers by comparing the input and
output representation. For node entities, a corrupted ob-
ject has different patterns from its local community, so its
initial representation should be distinct from the smoothed
representation. The reconstruction error is thus an appropri-
ate indicator for diagnosing such divergence. The anomaly
score for a particular node vi reads

score(vi) = ∥xi − x′
i∥2.

3.2. Mask Matrix Generation

Unlike conventional anomaly detection tasks, we aim at
generating a mask matrix of size n × d that identifies the
anomalous attributes, instead of corrupted node entities. In
addition, our primary focus is on graph recovery which does
not explicitly consider the disordered node connections or
the adjacency matrix. We thus define the mask matrix by
tweaking the anomaly score function

M = 1− threshold(∥X −X ′∥1, τ) (5)

By differentiating the raw feature matrix and the recon-
structed matrix from a graph autoencoder, we establish a
mask matrix that deduces element-wise reconstruction er-
rors. It is then binarized with the threshold value τ ∈ (0, 1).
For the jth feature of node i, Mij = 0 indicates the value
is trustworthy andMij = 1 suggests assigning a new value
to avoid potential corruption.

Under assumption (b) that E2 rarely exist, the vast majority
of the mask matrix should be 1, i.e., 1 −M should be a
sparse matrix. This requirement is double-assured by the
autoencoder algorithm and the thresholding function. As
the autoencoder does simply blursX to reach the smoothU
and the magnitude of E1 is assumed smaller than E2’s, the
difference ofX andX ′ mainly comes from E2. On top of
that, the tunable τ makes further adjustments on the sparsity
of M . Figure 2 supplements empirical evidence for the
effect of selecting different τ on the sparsity of 1−M with
perturbed citation networks. An increasing τ is illustrated
to reduce the number of non-zero elements in 1−M from
a considerably sparse level to a lower degree.

4. An Inertia Alternating Direction Method of
Multipliers (ADMM)

This section introduces the numerical scheme to solve (4).

Figure 2. Demonstration on the effect of τ to the sparsity level of
the mask matrix on citation networks with attribute injection.

4.1. An inertial ADMM

Denote Z = WU , then we can rewrite (4) as

min
U ,Z

∥νZ∥p,G + 1
2∥M ⊙ (U −X)∥qq,G,

s.t. Z = WU .
(6)

This forms a standard formulation of problems that can be
solved by ADMM (Gabay & Mercier, 1976). The associated
augmented Lagrangian to (6) reads

L(U ,Z;Y ) := ∥νZ∥p,G + 1
2∥M ⊙ (U −X)∥qq,G

+ ⟨Y , WU −Z⟩+ γ
2 ||WU −Z||2,

where γ > 0. To find a saddle-point of L(U ,Z;Y ),
ADMM applies the following iteration

Zk+1 =argmin
Z

∥νZ∥p,G + γ
2 ||WUk −Z||2

+ ⟨Yk, WUk −Z⟩,
Uk+1 =argmin

U

1
2∥M ⊙ (U −X)∥qq,G

+ γ
2 ||WU −Zk+1||2 + ⟨Yk, WU −Zk+1⟩,

Yk+1 =Yk + γ
(
WUk+1 −Zk+1). (7)

To secure an efficient solver, we consider the inertial
ADMM motivated by Alvarez & Attouch (2001). To derive
the scheme, we define Vk+1 = Yk − γZk+1 and obtain the
following inertial scheme for (7)

Zk+1 = argmin
Z

∥νZ∥p,G + γ
2 ||Z − (2Yk − Ṽ k)/γ||2,

Vk+1 = Yk − γZk+1,

Ṽ k+1 = Vk+1 + ak(Vk+1 − Vk),

Uk+1 = argmin
U

1
2∥M ⊙ (U −X)∥qq,G

+ γ
2 ||WU + Ṽ k+1/γ||2,

Yk+1 = Ṽ k+1 + γWUk+1, (8)

where Ṽ k+1 is called the inertial term and ak is the inertial
parameter. We refer to the work of Boţ & Csetnek (2014)
and Boţ et al. (2015), and the references therein for the
convergence analysis of the above inertial ADMM scheme.
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Table 1. Average performance with non-targeted attribute injection
Module CORA CITESEER PUBMED COAUTHOR-CS WIKI-CS

clean 81.26±0.65 71.77±0.29 79.01±0.44 90.19±0.48 77.62±0.26

corrupted 69.06±0.74 57.58±0.71 67.69±0.40 82.41±0.23 65.44±0.23

APPNP (Klicpera et al., 2018) 68.46±0.81 60.04±0.59 68.70±0.47 71.14±0.54 56.53±0.72

GNNGUARD (Zhang & Zitnik, 2020) 61.96±0.30 54.94±1.00 68.50±0.38 80.67±0.88 65.69±0.32

ELASTICGNN (Liu et al., 2021) 77.74±0.79 64.61±0.85 71.23±0.21 79.91±1.39 64.18±0.53

MAGNET-one (ours) 75.88±0.42 59.22±0.34 68.97±0.21 84.04±0.56 70.83±0.29

MAGNET-gae (ours) 76.81±0.69 64.79±0.73 75.41±0.35 86.50±0.37 72.40±0.21

MAGNET-true 78.48±0.67 68.55±0.74 75.63±0.56 89.23±0.40 75.50±0.20

4.2. Subproblems

The solutions to the subproblems of Zk+1 and Uk+1 de-
pend on p and q. Here we enumerate the special cases of
p = {0, 1}, q = {1, 2} which covers the maximum and
minimum sparsity in regularization.

Choices of p. Different values of p affects the thresholding
operator in the update of Zk+1. For the case of p = 1,
∥νZ∥p,G becomes the ℓ1-norm and its update requires a
soft-thresholding, that is,

Sα(x) = sign(x)⊙max
{
|x| − α, 0

}
.

When p = 0, a hard-thresholding defines Hα(x) = x when
|x| > α, and Hα(x) = 0 otherwise.

Choices of q. Compared to Zk+1, the update of Uk+1 in
(8) is more complicated as it involves more regularization
terms. When q = 2, the objective is a quadratic problem.

With W⊤W = Id, differentiating the function gives

Uk+1 =
(
M ⊙X −W⊤Ṽ k+1

)
/ (M + γ) , (9)

which requires an element-wise division. Since the fast
approximation of W is implemented by the Chebyshev
approximation, it happens when the approximation degree
is considerably small that the approximation has noticeable
error, i.e., WTW ̸= Id. Alternatively, the descent type
methods such as gradient descent, conjugate gradient can
be applied to inexactly solve the sub-problem with I steps
of iteration. At the ith (i ≤ I) iteration,

U (i+1) = U (i) − α
(
M ⊙ (U (i) −X)

+ γW⊤(WU (i) + Ṽ k+1/γ)
)
,

(10)

where α is the step-size. The solution is then Uk+1 = U (I).

In the case of q = 1, letQ = U −X and consider

1
2∥M ⊙Q∥1,G + γ

2 ||Q+X +W⊤Ṽ k+1/γ||2

under the optimality condition. The Qk+1 is the soft-
thresholding of −X −W⊤Ṽ k+1/γ and

Uk+1 = Qk+1 +X. (11)

5. Numerical Experiments
5.1. Experimental Protocol

Benchmark Preparation. We examine MAGNET on five
benchmark datasets: Cora, Citeseer and PubMed of the
citation networks (Yang et al., 2016), Wiki-CS (Mernyei
& Cangea, 2020) that classifies articles from Wikipedia
database, and Coauthor-CS (Shchur et al., 2018) that labels
the most active field of authors. As the given datasets do
not provide ground truth of anomalies, we conduct two
types of black-box poisoning methods that have been used
in graph anomaly detection and graph defense. A attribute
injection method (Song et al., 2007; Ding et al., 2019)
perturbs attribute through swapping attributes of the most
distinct samples in a random subgraph. A set of anomalies
can be obtained from different random subgraphs. We also
adopt a graph adversarial attack (Zügner & Günnemann,
2019) that leverages meta-learning to pollute node attributes
with the meta-gradient of the loss function.

Training Setup. For a fast recovering from the corrupted
graph, an inertial ADMM is iterated for 15 times. The GAE
to approximate binary reconstruction errors for the mask
matrix consists of two GCN encoding layers followed with
two GCN attribute decoding layers. The hidden representa-
tion is sent to GAE attribute reconstruction module for the
final prediction. All datasets follow the standard public split
and processing rules. The test performance is evaluated by
the average accuracy of 10 repetitions.

Baseline Comparison. We investigate three types ofM :
all-ones (MAGNET-one), GAE-approximated (MAGNET-

gae), and ground truth (MAGNET-true) matrices, where the
last case does not participate in the performance compari-
son. Instead, it indicates the upper limit of MAGNET with
the perfect mask matrix. We compare our model to three
popular baseline models for graph smoothing but with dif-
ferent design philosophy: APPNP (Klicpera et al., 2018)
that avoids global smoothness with residual connections;
GNNGUARD (Zhang & Zitnik, 2020) that modifies the
neighbor relevance in message passing to mitigate local cor-
ruption; and ELASTICGNN (Liu et al., 2021) that pursues
local smoothness with a mix of ℓ1 and ℓ2 regularizers.
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Table 2. Average performance with targeted adversarial attack

Module CORA CITESEER PUBMED

clean 81.26±0.65 71.77±0.29 79.01±0.44

corrupted 75.07±0.64 55.32±2.22 72.88±0.30

APPNP 73.49±0.59 55.67±0.28 70.63±1.07

GNNGUARD 72.02±0.61 57.64±1.31 71.10±0.32

ELASTICGNN 79.25±0.50 67.29±1.17 71.95±0.52

MAGNET-one (ours) 77.11±0.45 62.49±1.70 75.83±2.05

MAGNET-gae (ours) 79.04±0.50 67.40±0.73 78.63±0.32

MAGNET-true 80.88±0.37 67.46±0.95 79.16±0.41

5.2. Node Classification with Graph Recovery

Table 1-2 compare model performance under two types of
local corruptions, where Table 2 excludes Wiki-CS and
Coauthor-CS as the attribute poison of meta-attack is in-
effective on them. We highlight each score in red (green)
by their relative improvement (retrogression) over the non-
smoothed corrupted baseline (row 2).

It can be observed that MAGNET-gae outperforms its com-
petitors and recovers at most 94% prediction accuracy from
the perturbed attributes. Furthermore, a more accurate mask
approximation could push the prediction performance of
graph representation up to MAGNET-true’s scores. On the
other hand, the three baseline graph smoothing methods fail
to denoise local corruption within the input. In some cases
they are fooled to make worse predictions, as they are not
able to distinguish outliers from regular patterns. APPNP
leverages residual connections to avoid global smoothness
by reinforcing local anomalies; GNNGUARD makes modifi-
cations on the edge connection to indirectly influence node
representations; ELASTICGNN, although realizing the im-
portance of local smoothness, designs the optimization with
low-pass filters and restricts stringent consistency of the new
representation even on anomalous positions.

5.3. Further Investigation

We next visualize the effect of the GAE-oriented mask ap-
proximation and ADMM optimization.

Mask Approximation. We first verify the quality of GAE
through the recall of the approximation. Figure 3 pictures
the conditional mask matrix from model reconstruction er-
ror on Cora with attribute injection. A 200×200 sub-region
is amplified for both the ground truth matrix and the approx-
imated mask matrix at the middle, which indicates clearly
the sparsity of both matrices. The approximated mask ma-
trix succeeds in seizing 60% of anomalies, which provides
a reliable foundation to the subsequent recovering work.
Other visualizations of different datasets are in Appendix C

ADMM Optimization. Figure 4 visually exhibits the ef-
fect of ADMM optimization on local graph inpainting with

Figure 3. The ground truth mask (left), and conditional GAE-
approximated mask (right) at threshold τ = 0.1.

Original image
Noise only in Red Region

Local PSNR=17.43
Global PSNR=27.64

Local PSNR=24.59
Global PSNR=33.81

Figure 4. Image recovery with local additive white noise (σ = 50).
Three images are the noisy raw input (left), the inpainting result
by BM3D (middle), and the masked ADMM by MAGNET (right).

an example of image denoising, where the raw picture is
chosen from the BSD68 dataset with 480× 320 pixels. It
is processed to a graph of 2, 400 nodes and 64 feature at-
tributes. Each node is transformed by a patch of 8×8 pixels.
We select 9 of the nodes to assign white noise of N (0, 1) on
the attributes. As we are interested in the performance of the
ADMM optimizer, we assume a given mask matrix. Com-
pare to the classic denoising model BM3D (Dabov et al.,
2007), MAGNET restricts major smoothing effects within
the masked region. The rest of the ‘clean’ area maintains
a sharp detail, which is very contradictory to the BM3D’s
result, which blurs the entire scale of the picture.

6. Conclusion
We develop MAGNET, a graph neural network for recover-
ing a robust graph data representation from locally corrupted
node attributes. The key computational unit for coping with
regional outliers is based on a sparse and multi-scale reg-
ularizer with a mask of the anomalous positions in graph
node attributes, which is approximated with an unsupervised
graph autoencoder that requires no prior knowledge on the
distribution of anomalies. The optimization problem is dec-
orated with an lp,q regularization with an efficient inertial
ADMM, where the tunable p, q stimulate the maximum abil-
ity of the optimizer. The multi-level framelet coefficients
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removes global noises and regularizes local anomalous at-
tributes simultaneously. Our proposed model achieves satis-
fying performance to recovering a robust graph embedding
from local corruptions. In contrast, graph smoothing and
defense baseline methods fail to provide a decent solution.
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A. Graph Framelet Transform
This section briefs the fast computation of undecimated framelet transform on graphs. The initial idea was proposed by
Dong (2017), which is then developed to a graph convolution by Zheng et al. (2021). The key to the implementation is to
make fast approximation on the framelet decomposition and reconstruction operators through Chebyshev approximation.

Framelet transform divides an input signal to multiple channels by a set of low-pass and high-passes framelet operators. For
a specific nodes p of a signal x at scale j ∈ Z, we define the undecimated framelets φj,p(g),ψ

r
j,p(g) by

φj,p(g) :=
∑N

ℓ=1 α̂
(
λℓ

2j

)
uℓ(p)uℓ(v),

ψr
j,p(g) :=

∑N
ℓ=1 β̂

(r)
(
λℓ

2j

)
uℓ(p)uℓ(v), r = 1, . . . , n.

(12)

For two integers J, J1 (J > J1), an undecimated framelet system from a scale J1 UFSJJ1
(Ψ,η) is an undecimated tight

frame for l2(G), which is a non-homogeneous, stationary affine system:

UFSJJ1
(Ψ,η) := UFSJJ1

(Ψ,η;G)
:= {φJ1,p : p ∈ V } ∪

{
ψr
j,p : p ∈ V, j = J1, . . . , J

}n

r=1
.

(13)

The elements in UFSJJ1
(Ψ,η) are the undecimated tight framelets on G.

We call Ψ = {α;β(1), . . . , β(K)} a set of scaling functions, and it is determined by a filter bank η := {a; b(1), . . . , b(K)}.
In particular, we consider the Haar-type filter with one high pass. For x ∈ R, it defines

α̂(x) = cos(x/2) and β̂(1)(x) = sin(x/2).

The other component that plays a key role for embedding graph topology is the eigenpairs {(λ,u)}nj=1 of the graph
Laplacian L. The set of framelet decomposition operator projects input signals to a transformed domain as framelet
coefficients. To allow fast approximation of the filter spectral functions, m-order Chebyshev polynomials is considered.
Denote the m-order approximation of α and {β(1), . . . , β(K)} by T m

0 and {T m
k }Kk=1, the framelet decomposition operators

at (r, j) ∈ {(1, 1), . . . , (1, J), . . . (n, 1), . . . , (n, J)} ∪ {(0, J)} is defined by

Wk,1 =

{
Tr

(
2−KL

)
, j = 1,

Tr
(
2K+j−1L

)
T0

(
2K+j−2L

)
. . . T0

(
2−KL

)
, otherwise,

where the dilation scaleK satisfies λmax ≤ 2Kπ. In this definition, the finest scale is 1/2K+J that guarantees λℓ/2K+J−j ∈
(0, π) for j = 1, 2, . . . , n.

The approximated W is used in the penalty term of the objective function (4) formulated in Section 2. To learn more facts
about the undecimated framelet transform on graph, we refer the readers to the work by Dong (2017); Zheng et al. (2021).
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B. More details on the ADMM algorithm
This section provides essential details for the inertial ADMM to understand the update rules defined in Section 4.

B.1. Inertial ADMM

We denote Z = WU and rewrite (4) as

min
U ,Z

∥νZ∥p,G + 1
2∥M ⊙ (U −X)∥qq,G, such that Z = WU .

This forms a standard formulation of problems that can be solved by Alternating Direction Method of Multipliers (ADMM;
Gabay & Mercier (1976)). The associated augmented Lagrangian reads

L(U ,Z;Y ) := ∥νZ∥p,G + 1
2∥M ⊙ (U −X)∥qq,G + ⟨Y , WU −Z⟩+ γ

2 ||WU −Z||2.

To find a saddle-point of L(U ,Z;Y ), ADMM applies the following iteration

Zk+1 =argmin
Z

∥νZ∥p,G + γ
2 ||WUk −Z||2 + ⟨Yk, WUk −Z⟩,

Uk+1 =argmin
U

1
2∥M ⊙ (U −X)∥qq,G + γ

2 ||WU −Zk+1||2 + ⟨Yk, WU −Zk+1⟩,

Yk+1 =Yk + γ
(
WUk+1 −Zk+1).

The above iteration can be equivalently written as

Zk+1 = argmin
Z

∥νZ∥p,G + γ
2 ||WUk −Z + Yk/γ||2,

Uk+1 = argmin
U

1
2∥M ⊙ (U −X)∥qq,G + γ

2 ||WU −Zk+1 + Yk/γ||2,

Yk+1 = Yk + γ
(
WUk+1 −Zk+1).

If we further define
Vk+1 = Yk − γZk+1.

The above iteration can be reformulated as

Zk+1 = argmin
Z

∥νZ∥p,G + γ
2 ||Z −WUk − Yk/γ||2,

= argmin
Z

∥νZ∥p,G + γ
2 ||Z − (2Yk − Vk)/γ||2,

Vk+1 = Yk − γZk+1,

Uk+1 = argmin
U

1
2∥M ⊙ (U −X)∥qq,G + γ

2 ||WU + Vk+1/γ||2,

Yk+1 = Yk + γ
(
WUk+1 −Zk+1)

= Vk+1 + γWUk+1.

In this paper, we consider the inertial ADMM motivated by Alvarez & Attouch (2001), whose iteration is provided below:

Zk+1 = argmin
Z

∥νZ∥p,G + γ
2 ||Z − (2Yk − Ṽ k)/γ||2,

Vk+1 = Yk − γZk+1,

Ṽ k+1 = Vk+1 + ak(Vk+1 − Vk),

Uk+1 = argmin
U

1
2∥M ⊙ (U −X)∥qq,G + γ

2 ||WU + Ṽ k+1/γ||2,

Yk+1 = Yk + γ
(
WUk+1 −Zk+1)

= Ṽ k+1 + γWUk+1.

In general, we have ak ∈ [0, 1]. When the problem is convex, the convergence can be guaranteed choosing ak ∈ [0, 1/3[
(Boţ & Csetnek, 2014; Boţ et al., 2015).
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B.2. Solution to Subproblem of q = 1

When q = 1, letQ = U −X , and consider

min
Y

1
2∥M ⊙ Y ∥1,G + γ

2 ||WY +WX + Ṽ k+1/γ||2.

The optimality condition yields

1

2
M ⊙ ∂∥M ⊙Q∥1,G + γWT (WQ+WX + Ṽ k+1/γ)

⇐⇒ 1

2
M ⊙ ∂∥M ⊙Q∥1,G + γ(Q+X +WT Ṽ k+1/γ)

⇐⇒ 1
2∥M ⊙Q∥1,G + γ

2 ||Q+X +WT Ṽ k+1/γ||2.

From above we have thatQk+1 is the soft-thresholding of −X −WT Ṽ k+1/γ and

Uk+1 = Qk+1 +X.
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C. Experiments
This section provides more details on the experiments conducted in this work.

C.1. Dataset

Table 3 documents key descriptive statistics of the five datasets for the node classification tasks. We make this particular
selection to include the most classic citation network (Cora, Citesser, and Pubmed (Yang et al., 2016)), a dataset with
(relatively) dense edge connection (wiki-cs (Mernyei & Cangea, 2020)), and a dataset with (relatively) high dimension of
feature attributes (coauthor-cs (Shchur et al., 2018)).

Table 3. Summary of the datasets for node classification tasks.

Cora Citeseer Pubmed wiki-cs coauthor-cs

# Nodes 2, 708 3, 327 19, 717 11, 701 18, 333
# Edges 5, 429 4, 732 44, 338 216, 123 100, 227
# Features 1, 433 3, 703 500 300 6, 805
# Classes 7 6 3 10 15
# Training Nodes 140 120 60 580 300
# Validation Nodes 500 500 500 1769 200
# Test Nodes 1, 000 1, 000 1, 000 5847 1000
Label Rate 0.052 0.036 0.003 0.050 0.016

C.2. Poison Preparation

We detail here the pre-processing we conduct on the two types of graph poison methods.

Injection We add the injection noise following a similar strategy by Ding et al. (2019). A certain number of targeted nodes
are randomly selected from the graph and ready to change their attributes without perturbing the edge connectivity. For each
selected node i, we randomly pick another k nodes from the graph and select the node j whose attributes deviate the most
from node i among the k nodes by maximizing the Euclidean distance ∥xi − xj∥2. Then, we substitute the attributes xi of
node i with xj . In this work, we set the value of k to 100 for small datasets such as CORA and CITESEER, and k to 500 for
relative larger datasets such as PUBMED, COAUTHOR-CS and WIKI-CS.

Meta-attack The method meta-attack in perturbing the attributes is achieved by (Zügner & Günnemann, 2019). Although
meta-attack mainly perturbs the edge connectivity in (Zügner & Günnemann, 2019), we take the technique to create local
noise on the graph by corrupting a small amount of attributes in the feature matrix of a graph. In this work, the amount of
perturbation varies for different graphs to obtain a noticeable attack effect.

C.3. Model Preparation

We disclose the full details of all the models examined in the experiments, including the access of model implementation,
and their tuning space. All the experiments are conducted with PyTorch on NVIDIA ® Tesla A100 GPU with 6,912 CUDA
cores and 80GB HBM2 mounted on an HPC cluster. All benchmark datasets are publicly available in the PyTorch Geometry
library.

C.3.1. AVAILABILITY OF MODEL IMPLEMENTATION

We have uploaded our model to https://github.com/bzho3923/MAGnet/tree/main/submission. In
addition, we take the official implementation of the baseline models from the repository:

• GNNGUARD: https://github.com/mims-harvard/GNNGuard

• ELASTICGNN: https://github.com/lxiaorui/ElasticGNN
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• APPNP: https://github.com/klicperajo/ppnp

For the graph attack module METTACK, we follow the package implementation of DeepRobust (Li et al., 2021), which is
available at https://github.com/DSE-MSU/DeepRobust.

C.3.2. TUNING SPACE

We now reveal the tuning space of the implemented models as the guarantee of reproducible results and fair comparison.
Both our proposed MAGNET and the baseline models are optimized to their best performance by tuning:

Table 4. Hyperparameter searching space for node classification.

Hyperparameters CORA CITESEER PUBMED COAUTHOR-CS WIKI-CS

Learning rate 5e-3 5e-3 5e-3 5e-3 5e-3
Weight decay (L2) 5e-3 5e-3 1e-3 1e-3 1e-3
Hidden size 128 128 128 128 128
Dropout ratio 0.5 0.5 0.5 0.5 0.5
Epochs 100 100 100 100 100

C.4. Percentage Performance Improvement in Node Classification

This section supplements the percentage improvement of node classification tasks mentioned in the main text and in Table 1
and Table 2. The relative score of improvements is calculated by

Relative Score =
S − Scorrupted

Sclean − Scorrupted
,

where S denotes the current score of the performed model, and Sclean and Scorrupted are the accuracy score of GCN on the
clean dataset and corrupted dataset, respectively. We use the relative score to highlight the performance in Table 1 and
Table 2. The precise relative scores are reported in Table 5 and Table 6, respectively.

Table 5. Improvement percentage of average performance for node classification with non-targeted local corruption

CORA CITESEER PUBMED COAUTHOR-CS WIKI-CS

Module absolute relative absolute relative absolute relative absolute relative absolute relative

APPNP −0.95% −5.44% 4.27% 17.34% 1.49% 8.92% −13.68% −148.29% −13.62% −73.15%
GNNGUARD −10.36% −58.98% −4.58% −17.38% −1.20% 7.16% −2.11% −22.37% 0.00% 0.00%
ELASTICGNN 12.47% 71.00% 12.21% 49.54% 5.23% 31.27% −3.03% −32.89% −1.93% −10.34%
MAGNET-one (ours) 9.78% 55.68% 2.85% 11.31% 1.89% 10.80% 1.98% 20.95% 8.24% 44.25%
MAGNET-gae (ours) 11.13% 63.34% 12.52% 50.81% 11.40% 68.20% 4.96% 52.57% 10.64% 57.14%

MAGNET-true 13.50% 76.85% 19.05% 72.22% 11.73% 70.14% 8.28% 87.66% 15.37% 82.59%

Table 6. Improvement percentage of average performance for node classification with targeted local corruption

CORA CITESEER PUBMED

Module absolute relative absolute relative absolute relative

APPNP −2.10% −25.53% 0.63% 2.13% −3.09% −36.70%
GNNGUARD −4.06% −49.27% 4.19% 14.10% −2.44% −29.04%
ELASTICGNN 5.57% 67.53% 21.64% 72.77% −1.28% −15.17%
MAGNET-one (ours) 2.72% 32.96% 12.96% 43.59% 4.05% 48.12%
MAGNET-gae (ours) 5.29% 64.14% 21.84% 73.43% 7.89% 93.80%

MAGNET-true 7.74% 93.86% 21.95% 73.80% 8.62% 102.45%
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We also report the absolute score of improvement in the two tables above for a direction comparison, which is

Absolute Score =
S − Scorrupted

Scorrupted
.

C.5. Ablation Study

This section reports the performance of the ablation models on the node classification tasks. We investigate the influence
of p, q in different datasets of different types of local corruption. The particular performance comparison under anomaly
injection and mettack are listed in Table 7 and Table 8, respectively.

Table 7. Average performance for ABLATION study on node classification with two layers of GCN. (injection)
Module Dataset

mask reg (p) loss (q) CORA CITESEER PUBMED COAUTHOR-CS WIKI-CS

N/A L⋆
2 L2 69.12±0.57 57.58±0.71 67.69±0.23 82.41±0.40 65.44±0.23

ONE
L0

L1 58.36±0.89 57.30±0.74 65.77±1.03 82.17±0.41 64.58±0.21

L2 68.74±0.22 54.07±1.23 58.52±1.02 80.63±0.59 63.63±0.27

L1
L1 69.12±0.57 57.58±0.71 67.69±0.40 82.17±0.41 64.63±0.18

L2 75.88±0.42 59.22±0.34 68.97±0.21 84.04±0.56 70.83±0.29

GAE
L0

L1 68.42±1.15 54.38±0.54 67.74±0.71 83.95±0.52 61.96±0.16

L2 66.34±0.81 56.29±1.18 59.15±0.85 83.88±0.55 64.67±0.29

L1
L1 72.76±0.40 63.60±0.66 75.41±0.35 86.02±0.59 72.40±0.21

L2 76.81±0.98 64.79±0.14 71.13±0.25 86.50±0.37 60.08±0.39

TRUE
L0

L1 77.15±0.74 68.14±0.85 74.40±0.56 88.14±0.46 72.42±0.29

L2 76.44±0.59 65.02±0.97 68.12±1.24 87.01±0.24 71.51±0.20

L1
L1 78.48±0.67 68.55±0.74 75.63±0.56 89.23±0.37 75.50±0.20

L2 77.57±0.92 64.29±0.19 75.19±0.18 86.72±0.31 74.44±0.23

Table 8. Average performance for ABLATION study on node classification with two layers of GCN. (Mettack)

Module Dataset

mask reg (p) loss (q) Cora Citeseer PubMed

N/A L⋆
2 L2 75.07±0.64 55.32±0.64 72.88±0.30

ONE
L0

L1 71.21±1.12 55.38±2.12 71.52±0.43

L2 74.46±0.60 57.75±2.23 59.76±1.91

L1
L1 75.07±0.64 55.32±2.22 72.88±0.65

L2 77.11±0.45 62.49±1.70 75.83±0.35

GAE
L0

L1 77.42±1.08 56.13±0.47 78.42±0.65

L2 77.03±0.78 55.84±1.37 70.82±0.38

L1
L1 78.18±0.56 63.22±1.56 78.63±0.32

L2 79.04±0.50 67.40±0.73 74.47±0.30

TRUE
L0

L1 80.88±0.37 67.46±0.95 79.16±0.41

L2 80.57±0.51 67.21±1.63 71.90±0.41

L1
L1 79.99±0.45 65.50±0.81 79.14±0.32

L2 77.16±0.66 67.33±0.49 75.04±0.32

C.6. GAE visualization

Figure 5-Figure 7 visualize the sparse mask matrix of the five datasets with anomaly injection. We are interested in the recall
of the mask matrix that exposes the quality of the mask matrix approximation. As a result, we print the conditional mask
matrix that marks the positions of approximated index that are at the true anomalous spots. Note that we did not visualize
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the mask matrix from the datasets under mettack perturbation, as such attack focuses major poisonings in a minority of node
entities. When making visualizations on such matrices, they are nothing more than a few horizontal lines.
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Figure 5. citeseer

Figure 6. first 3000 rows and columns only. The full matrix is too larger to display ( 18000x7000)

Figure 7. pubmed: first 3000 nodes; 500 features; threshold=0.005
Figure 8. Wikics: first 3000 nodes; 300 features; threshold=0.05
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C.7. Computational Speed

We show the inertial effect of ADMM by the counting the computational speed of our model on Cora. We specifically
consider two settings with and without the boosting effect, i.e., γ in (8) equals to 0 or not. Below we report the running
time of a complete update process udnder certain convergent condition ϵ , i.e., ∥Uk+1 −Uk∥ < ϵ. The speed is counted in
seconds.

Table 9. Hyperparameter searching space for node classification.

w/ boost(sec) w/o boost(sec)

p = 1, q = 2 49.38 54.16
p = 1, q = 1 90.44 94.84
p = 0, q = 2 12.43 13.05
p = 0, q = 1 4.37 5.43


